Within-participant information theory + Prevalence Example

Effect of decreased alertness on cognitive control

Behavioural Analysis

• 33 participants did an auditory stroop task (left vs right): ~1600 trials per participant

congruent and incongruent trials; awake vs drowsy experimental conditions

Population mean analysis on Reaction Times

• Linear Mixed Effect Model

Linear mixed-effects model fit by	ML					
Model information:						
Number of observations	54264					
Fixed effects coefficients	4					
Random effects coefficients	132					
Covariance parameters	11					
Formula:						
RT ~ 1 + congruent*drowsy + (2	1 + congruent*	*drowsy ID)				
Model fit statistics:						
AIC BIC Logi	Likelihood	Deviance				
7.72e+05 7.7213e+05 -3.8	8598e+05	7.7197e+05				
Fixed effects coefficients (95% C						
	stimate SE	tStat	DF	pValue	Lower	Upper
{'(Intercept)' }	645.4 22	2.72 28.407	54260	3.2458e-176	600.87	689.93
{'congruent' } 30	9.087 4.8	3288 6.2308	54260	4.6732e-10	20.623	39.552
{'drowsy' } 20	97.73 29.	692 6.9961	54260	2.6622e-12	149.53	265.93
<pre>{'congruent:drowsy'} 6</pre>	.7345 6.	169 1.0917	54260	0.27499	-5.3569	18.826

Population mean analysis on Reaction Times

- Linear Mixed Effect Model
- Significant main effect of congruence (30 ms)
- Significant main effect of drowsiness (207 ms)
- No interaction

Fixed ef	fects coeffi	cients	(95% CIs):						
Name			Estimate	SE	tStat	DF	pValue	Lower	Upper
{'(I	ntercept)'	}	645.4	22.72	28.407	54260	3.2458e-176	600.87	689.93
{'co	ngruent'	}	30.087	4.8288	6.2308	54260	4.6732e-10	20.623	39.552
{'dr	owsy'	}	207.73	29.692	6.9961	54260	2.6622e-12	149.53	265.93
{ ' co	ngruent:drows	sy'}	6.7345	6.169	1.0917	54260	0.27499	-5.3569	18.826

Within-participant linear model of mean RT

• We can simply run the same linear model separately within each participant:

%% fit within participant models sub mdls = cell(1,Nsub); for subi=1:Nsub sub mdls{subi} = mdl; end

```
sub dat = RT dat(RT dat.ID==subi,:);
mdl = fitlm(sub dat, 'RT ~ congruent*drowsy');
```

Within-participant linear model of mean RT

- We can simply run the same linear model separately within each participant:
- 5/33 have a significant main effect of congruence
- 28/33 have a significance main effect of drowsiness
- 0/33 have a significant interaction

Within-participant linear model of mean RT

- What do we learn about the population from this:
- https://estimate.prevalence.online/

Within-participant linear model of mean RT Congruence

- Evidence to reject the "global null" ie we can have some confidence the effect exists
- But doesn't seem to be particularly widespread
- Perhaps experiment underpowered to detect this within participants?

Within-participant linear model of mean RT Alertness

- Good evidence this effect occurs in more than 2/3rds of the population
- Also evidence that this doesn't occur in everyone
- Everyone who has a significant effect is slower in the drowsy condition
- The overall average RT slowdown is 207ms (LMEM), but ~84% of the population would show a significant RT slowdown in this experiment

- Non-parametric, robust, within-participant statistical tests
- Bin RT within-participant: top 3rd, middle 3rd, bottom 3rd of RT

- Non-parametric, robust, within-participant statistical tests
- Bin RT within-participant: top 3rd, middle 3rd, bottom 3rd of RT

- Non-parametric, robust, within-participant statistical tests
- Bin RT within-participant: top 3rd, middle 3rd, bottom 3rd of RT

- Non-parametric, robust, within-participant statistical tests
- Bin RT within-participant: top 3rd, middle 3rd, bottom 3rd of RT

- Non-parametric, robust, within-participant statistical tests
- Bin RT within-participant: top 3rd, middle 3rd, bottom 3rd of RT

Non-parametric permutation test

. . .

- Only assumes independence of trials
- Shuffle **drowsy** condition label

Within-participant MI

• **Congruence** : Ml(congruence; RT) : 23/33 Can detect congruence effect in majority of population with this experiment (LM: 5/33 or 11/33 with logRT)

Within-participant MI

- **Congruence** : MI(congruence; RT) : 23/33 Can detect congruence effect in majority of population with this experiment (LM: 5/33 or 11/33 with logRT)
- Alertness: MI(alertness; RT) : 28/33 (LM: 28/33 or 29/33 with logRT)

Prevalence MAP: 0.68 96% HPDI: [0.50 0.83] 50% HPDI: [0.62 0.73]

Prevalence MAP: 0.84 96% HPDI: [0.68 0.94] 50% HPDI: [0.79 0.88]

Within-participant Interaction

- co-Information: col(RT; congruence; alertness)
 = MI(RT; congruence) CMI(RT; congruence | alertness)
- modulation index for effect of alertness on the relationship between RT and congruence
- permutations: shuffle alertness (null distribution that alertness has no effect)

Within-participant Interaction

- co-Information: col(RT; congruence; alertness) = MI(RT; congruence) - CMI(RT; congruence | alertness)
- modulation index for effect of alertness on the *relationship* between **RT and congruence**
- permutations: shuffle alertness (null distribution that alertness has no effect)
- 22/33 have a significant interaction!

Prevalence MAP: 0.65 96% HPDI: [0.47 0.80] 50% HPDI: [0.59 0.70]

- There is a strong effect of drowsiness. Could this interaction be due to different rank ordering across the conditions because of the fixed effect of drowsiness?
- Can bin RT in each condition separately. This is like z-scoring in each condition: both now have same uniform marginal distribution.

- No difference in marginal distribution between drowsy and alert. Effect of congruence visible in both conditions
- Alertness: MI(alertness; RT) : 0/33 (we have normalised away effect of alertness)
- **Congruence** : MI(congruence; RT) : 26/33
- **Interaction**: col(RT; congruence; alertness) : 25/33

- Interaction: col(RT; congruence; alertness) : 25/33
- Interaction remains even when normalising away marginal differences between alertness conditions.
- It is a difference in the mapping between congruence and RT rank, within each condition

- Interaction: col(RT; congruence; alertness) : 25/33
- Interaction remains even when normalising away marginal differences between alertness conditions.
- It is a difference in the mapping between congruence and RT rank, within each condition
- Majority of participants with sig. col have weaker effect of congruence on RT in the drowsy condition

- Interaction: col(RT; congruence; alertness) : 25/33
- Majority of participants with sig. col have lower MI(RT; congruence) in the drowsy condition
- This means: can better predict congruence condition from observing reaction times when they are awake
- I.e. 0.05 bits : need to observe 20 trials on average to predict congruence 0.02 bits : need to observer 50 trials to predict congruence

- Interaction: col(RT; congruence; alertness) : 25/33
- Majority of participants with sig. col have lower MI(RT; congruence) in the drowsy condition
- But not all! One has more MI in drowsy condition, and another group have differences the same range as participants without an interaction
- So what is col measuring here?

- Interaction: col(RT; congruence; alertness) : 25/33
- Majority of participants with sig. col have lower MI(RT; congruence) in the drowsy condition
- But not all!
 One has more MI in drowsy condition, and another group have differences the same range as participants without an interaction
- So what is col measuring here?

awake

drowsy

Within-participant Interaction What is col measuring for those participants with no MI difference?

• Breakdown MI(RT; congruence) into the contributions of each combination : pointwise mutual information (PMI)

I(RT; congruence)

Population mean theta power

1									
	Linear mixed-effects m	odel fit	by ML						
	Model information: Number of observat Fixed effects coef Random effects coe Covariance paramet	ficients fficients	31494 4 132 11						
	Formula: RT ~ 1 + congruent	*drowsy +	- (1 + congru	ient*drows	y ID)				
	Model fit statistics:								
	AIC 186002.103418761	BIC 186127.	466703719	LogLikel -92986.0	ihood 517093807	Deviance 185972.1			
	Fixed effects coeffici	.ents (95%	GCIS):						
	Name		Estimate		SE		tStat	DF	pValue
	{'(Intercept)'	}	0.173184		0.1887667		0.91745152536073	31490	0.358913109686981
	{'congruent'	}	0.4846017		0.1062576		4.56062868793664	31490	5.11926886598408e-06
	{'drowsy'	} 	-0.71183126		0.1206975		-5.89764522911559	31490	3.72484753626096e-09
	{'congruent:drowsy	}	-0.36040311	1/02//1	0.1253899	02393/31	-2.87425944898679	31490	0.0040524718335375

Within-participant theta power

- Linear Model: congruence: 6/33, alertness: 13/33, interaction: 5/33
- MI: congruence: 6/33, alertness: 18/33, co-information: 7/33
- 7/33 provides evidence of effect at population level
- Supports group level interaction, but suggests either experiment underpowered for within participant, or not everyone shows it

• MI approach has slightly more sensitivity within-participant but shows similar effects.

Prevalence MAP: 0.17 96% HPDI: [0.05 0.34] 50% HPDI: [0.12 0.22] . 🕂 🖪 🗖 🖾 🏠 📖 Posterior density 0.2 0.4 0.6 0.8 Population proportion

Within-participant theta power

Fixed effects coeffi	cients ((95% CIs):				
Name		Estimate	SE	tStat	DF	pValue
{'(Intercept)'	}	0.1731843078659	0.188766712004545	0.91745152536073	31490	0.35891310968698
{'congruent'	}	0.48460173439805	0.106257660414205	4.56062868793664	31490	5.11926886598408e-0
{'drowsy'	}	-0.711831267208987	0.120697539366188	-5.89764522911559	31490	3.72484753626096e-09
{ 'congruent:drow	/sy'}	-0.360403111762771	0.125389902393751	-2.87425944898679	31490	0.004052471833537

Random effects covariance parameters (95% CIs): Group: ID (33 Levels)									
Name1	Name2	Туре	Estimate						
{'congruent:drowsy'}	{'congruent:drowsy'}	{'std' }	0.391678112624746						

Prevalence MAP: 0.17 96% HPDI: [0.05 0.34] 50% HPDI: [0.12 0.22]

What does col tell us?

- There is a statistical interaction between the alertness condition and the congruence effect
- This is more general / less specific than an interaction in a linear model for means
- Can do non-parametric statistical testing within-participant with higher power than linear modelling
- Prevalence lets us make quantitative statements about the population, based on our experiment, which may be closer to the scientific aims
- More robust statistical results (replication built in across participants)

Advantages of information theory

- Computationally efficient within-participant non-parametric tests with good statistical power
- col can reflect different types of interaction
- Can tell you where something interesting is happening, but not exactly what it is (i.e. no mechanistic insight here!)
- But can help with multiple comparison (selecting regions for modelling), exploratory data analysis, prevalence etc.

If you want to estimate prevalence online just go to:

https://estimate.prevalence.online/

LMEM on logRT

Linear	mixed-effects	model	fit	by	ML
--------	---------------	-------	-----	----	----

Model information:							
Number of observati	ons	54264					
Fixed effects coeff	icients	4					
Random effects coef	ficients	132					
Covariance paramete	rs	11					
Formula:							
logRT ~ 1 + congrue	nt*drowsy	+ (1 + congr	ruent*drowsy	ID)			
Model fit statistics:							
AIC BIC L	ogLikeliho	ood Deviar	ice				
33466 33600 -	16718	33436					
Fixed effects coefficie	nts (95% (CIs):					
Name	E	Estimate	SE	tStat	DF	pValue	Lower
{'(Intercept)'	}	6.4152	0.033187	193.3	54260	Θ	6.3501
{'congruent'	}	0.050629	0.0056099	9.025	54260	1.854e-19	0.039634
{'drowsy'	}	0.24012	0.034498	6.9604	54260	3.4319e-12	0.1725
{ 'congruent:drowsy'	}	0.0017643	0.0067334	-0.26202	54260	0.79331	-0.014962