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Neuroimaging Data Analysis
• Goal of most (functional) neuroimaging data analysis (within cognitive 

neuroscience): Detect and quantify modulations of recorded signals 
[EEG, MEG, fMRI] by experimental stimuli or conditions 

• Statistics: 

• Determine “statistical significance”  (reject null hypothesis of no 
effect) 

• Measure size of the effect 

• Eg: d’, t-test, correlation, ANOVA, GLM, multivariate decoding 
approaches



Where and how strongly does the 
stimulus affect the recorded signal?
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How does the stimulus 
representation emerge over time?



Mutual Information
• Mutual Information (MI) is the effect size for a statistical 

test of dependence (against null hypothesis that the two 
variables are statistically independent) 

• Most general assumption/model free such test (not 
restricted to linear effects) 

• Difficult to estimate in practise 

• Nice interpretations: coding/decoding, ideal observer, yes-
no questions, average single trial reduction in uncertainty



Entropy

• MI is based on entropy; a measure of uncertainty (cf. 
variance) 

• High entropy = high variance; low entropy = low variance; 
but entropy not restricted to unimodal variables 

• Many information theoretic quantities have analogues in 
traditional statistics - simply replace variance with entropy 
(eg ANOVA - MI)



High entropy, High variance

Low entropy, low variance

Low entropy, high variance



Mutual Information

• 3 forms - each lead to an interpretation 

• Replace variance with entropy - gives information 
theoretic analogues to common statistics (think of 
variance explained) 

• Meaningful effect size - units of bits

I(R;S) = H(R)�H(S)�H(R,S)

= H(R)�H(R|S)
= H(S)�H(S|R)



Mutual Information

• Unsigned; higher contrast than correlation
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Calculating Mutual 
Information

• Discrete formulation. Bin continuous data. Bias, infeasible 
for multi-dimensional signals. 

• Nearest Neighbour (Kraskov). Low bias, but very high 
variance. Computationally expensive.  

• Parametric. (i.e. assume data are Gaussian). Great if 
assumptions are met. 

• Gaussian-Copula Mutual Information. Computationally 
cheap. Robust. Data efficient. BUT an approximation



GCMI
• https://github.com/robince/gcmi 

• http://onlinelibrary.wiley.com/doi/10.1002/hbm.23471/full 

• Works by “normalizing” data and then applying a Gaussian 
assumption on the dependence (individual input variables 
do not have to be Gaussian!) 

• Mathematically justified (lower bound on true information) 

• Rank statistic (input is ranks of each variable)

https://github.com/robince/gcmi
http://onlinelibrary.wiley.com/doi/10.1002/hbm.23471/full


GCMI
• “copula” = maths-y way of saying we look at ranks (ignore 

the marginal distribution)



GCMI
• “copula” = maths-y way of saying we look at ranks (ignore 

the marginal distribution)



GCMI

• Transform marginals to standard normal preserving rank 
relationships



GCMI

• Transform marginals to standard normal preserving rank 
relationships ( copnorm  function) 

• Use Gaussian parametric estimation  ( mi_gg  function)  

• Gives a lower bound MI estimate ( gcmi_cc does both 
steps)



GCMI
• Multivariate 

• Rank based (robust) 

• Effect sizes on a meaningful, additive common scale 

• Can combine discrete and continuous variables 

• Equivalent statistical power to existing methods (e.g. t-
test, rank correlation, etc.) 

• Use with permutation testing 

• Easy to use
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Multivariate MI

• For multidimensional variables, copula transform each 
dimension independently 

• Can apply to low dimensional multivariate responses (1-10 dim)  
e.g. magnetic field vectors, EEG voltage + instantaneous 
temporal derivative, complex spectra 

• Allows for higher-order information theoretic quantities : 
conditional mutual information, interaction information, 
directed information (transfer entropy), directed feature 
information



MI as the basis of framework 
for data analysis

• Robust (rank based), computationally efficient, meaningful effect size 
(bits), common scale (across univariate, multivariate, continuous and 
discrete response variables, behaviour etc.) 

• Conditional Mutual Information - (like partial correlation) 
condition out the effect of correlated features (also group statistics) 

• Interaction Information - study representational interactions (c.f. 
RSA, temporal generalisation decoding) 

• Directed Information (transfer entropy), Directed Feature 
Information (communication of specific content) (Ince et al. 
Scientific Reports 2015)



Information theoretic quantity Other statistical approaches

Mutual Information (discrete; discrete) Chi-square test of independence; Fishers exact test

MI (univariate continuous; discrete) 2 classes: T-test, KS-test, Mann-Whitney U test; ANOVA

MI (multivariate continuous; discrete) 2 classes: Hotelling T2-test; Decoding (CV classifier)

MI (univariate continuous; univariate 
continuous)

Pearson correlation; Spearman rank correlation; Kendall rank 
correlation

MI (multivariate continuous; univariate 
continuous)

Generalized Linear Model framework 
Decoding (CV regression)

MI (multivariate continuous; multivariate 
continuous)

Canonical correlation analysis 
Distance correlation

Conditional Mutual Information Partial correlation (continuous variables and linear effects only)

Directed Information Granger causality 

Directed Feature Information Dynamic Causal Modeling (Psychophysiological Interactions)

Interaction Information Representational Similarity Analysis (redundancy only) 
Cross-classification decoding (redundancy only) 
Mediation analysis



Information theoretic quantity Other statistical approaches

Mutual Information (discrete; discrete) Chi-square test of independence; Fishers exact test

MI (univariate continuous; discrete) 2 classes: T-test, KS-test, Mann-Whitney U test; ANOVA

MI (multivariate continuous; discrete) 2 classes: Hotelling T2-test; Decoding (CV classifier)

MI (univariate continuous; univariate 
continuous)

Pearson correlation; Spearman rank correlation; Kendall rank 
correlation

MI (multivariate continuous; univariate 
continuous)

Generalized Linear Model framework 
Decoding (CV regression)

MI (multivariate continuous; multivariate 
continuous)

Canonical correlation analysis 
Distance correlation

Conditional Mutual Information Partial correlation (continuous variables and linear effects only)

Directed Information Granger causality 

Directed Feature Information Dynamic Causal Modeling (Psychophysiological Interactions)

Interaction Information Representational Similarity Analysis (redundancy only) 
Cross-classification decoding (redundancy only) 
Mediation analysis

Common, 
quantitatively  
comparable 
effect size



Questions?



Practical 1
Two category event related EEG

prac1_discrete_eeg.m



Data
• Face perception EEG data set (thanks to Guillaume 

Rousselet, Kasia Jaworska) 

• 2 classes: Face (stim=0) vs Noise (stim=1) 

• CSD preprocessing  

• csddat  :  [Ntrl  Nch  Nt]  
stim    :  [1 Ntrl]  
time    :  [1 Nt]  
chanlocs:  [1 Nch]



GCMI - Continuous-Discrete

• Two different approaches 

• mi_model_gd : a model comparison more like ANOVA. 
Compares a rank-Gaussian unconditional model, to 
conditional rank-Gaussian models. A lower bound in 1D, 
but not in 2D+. 

• mi_mixture_gd : estimates MI based on a mixture of 
approximate rank-Gaussian conditional.



GCMI - Continuous-Discrete

• mi_model_gd : better statistical power, 
computationally faster. Use by default when you are doing 
conventional statistics. 

• mi_mixture_gd : Use for higher dimensional 
responses when you plan to do something quantitative 
with the resulting MI values (e.g. comparing with 
behaviour, calculating interaction information). 



PART B:

• Split across participants. 

• If your birthday is the first half of the year, leave 
mi_model_gd uncommented. 

• If your birthday is in the second half of the year, 
comment out mi_model_gd and uncomment 
mi_mixture_gd



GCMI vs t-test

GCMI
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Model vs Mixture



Model vs Mixture



PART C: Multivariate 
Responses
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BONUS ROUND: Spectral 
analysis

• Stockwell transform - adaptative time-frequency 
representation (like wavelets)



Spectral MI: phase and power
Simulation 1: Phase Modulation



Spectral MI: phase and power
Simulation 2: Power Modulation



Spectral MI: phase and power

Simulation 1 Simulation 2



Spectral MI: phase and power
• Avoid issue of circular variables by remaining in 2D complex 

plane but normalising away effect of amplitude 

• A test for modulation of phase + power by discrete or 
continuous experimental factors with a directly comparable 
effect size 

• Can be applied to spectral data from any decomposition 
method (Hilbert, wavelets, emprical mode decomposition etc.) 

• Interaction information : can directly relate modulations of 
phase and power within and across bands



GCMI Spectra
• Phase and power with directly comparable effect size

2D Complex Spectrum
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Break

Questions?



Practical 2
Continuous feature : “Bubbles” sampling

prac2_face_bubbles.m



Sampling

• Random sampling as part of experimental design 

• Generative models can provide a tractable stimulus 
feature space to sample 

• Variations in dynamic naturalistic stimuli 

• Relate sampled stimulus variation to both behavioural 
responses and neuroimaging responses



Sampling with Bubbles

• “2d Bubbles” Direct spatial sampling of an image with randomly positioned 
Gaussian apertures 

• Gosselin, F, and Schyns, P. “Bubbles: A Technique to Reveal the Use of Information 
in Recognition Tasks.” Vision Research 41, no. 17 (August 2001): 2261–71

Presented 
  StimulusBubble Mask

=

Image

×



Bubbled Face Detection
Presented Stimulus

Trials

Bubble Mask = Detection task 
response

• Face
• Noise

Face or Noise 
Image ×

Rousselet, G. A., Ince, R. A. A., van Rijsbergen, N. J., and Schyns, P. G. (2014). Eye 
coding mechanisms in early human face event-related potentials. J Vis 14, 7. 











Data
• Stimuli: Bubble mask images  

               [ trials x vertical pixels x horizontal pixels ] 

• Behavioural Responses: face vs noise, reaction time 
                                             [ trials ] 

• EEG: CSD + bandpass filter  
                    [ trials x time points x sensors ] 

• Challenge: relate high-dimensional stimulus to behaviour 
and high-dimensional EEG response



Part A: Pixels vs Reaction Time
• Reverse correlation: correlate each pixel’s visibility with a 

behavioural response

Bin 0 (283 ms) Bin 1 (349 ms) Bin 2 (628 ms)
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Part A: Pixels vs Reaction Time

• Calculate MI independently for each pixel; plot resulting 
image 

• Scale gives good contrast for exploratory analysis



Part A: Pixels vs Reaction Time

• Calculate MI independently for each pixel; plot resulting 
image 

• Scale gives good contrast for exploratory analysis



Part B: Dimensionality Reduction
• Full pixel MI images at every sensor + time point. Computationally 

intensive and hard to visualise. 

• Reduce dimensionality by considering the visibility of small regions rather 
than individual pixels 

• Defined a priori, from behaviour or from data-driven methods 
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• Sum bubble mask value (pixel visibility) within masked 
regions

Part B: Dimensionality Reduction



Ex 1: Stimulus Dimensionality Reduction
• Relationship with RT preserved in 1D stimulus feature 

• Both eyes affect RT; mouth region doesn’t (consistent 
with full MI pixel image)
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Behaviour summary

• Can do this sort of analysis with any behavioural measure: 
response, accuracy (correct/incorrect), choice confidence 

• Can use other sampling mechanisms (generative models, 
noise sampling, continuous stimuli). Key requirement is 
diverse sampling of high-dimensional naturalistic stimulus 
space



Part C: Stimulus Feature vs 
EEG
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128Biosemi_electrodemap.tif
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• Activation is symmetric (bilateral N170 ERP) 

• But (stimulus) information is asymmetric (lateralized) 

• Information (Representation, Coding, Stimulus) vs 
Activation



BONUS ROUND: Movies



BONUS ROUND: Movies



Recap

• Rank based statistic 

• Continuous and discrete 

• Multivariate (spectra, temporal derivative)



Break?

• Move to prac3_eeg_temporal_interaction.m



Representational Interactions

• Information processing perspective requires not just 
tracking stimulus modulations, but relating the 
representations in different neural signals 

• Currently the only method that addresses this in 
Representational Similarity Analysis 

• We can do this with information theory



Representational Interactions

Reduced Response Descriptions Experimental Modalities

Temporal Regions
stimulus modulation of evoked 
signal on parietal EEG electrode

early late
time

MI

Spatial Regions
beamformed MEG activity in:

auditory cortex

visual cortex

gamma

Frequency Regions

time

freq
MI of MEG spectrogram

alpha

time

single trial N170
(amplitude, latency)

EEG response at time t
(raw signal, gradient)

simultaneously recorded
fMRI voxel activation
(single trial GLM beta)

time

EEG trials
(LDA filter)

EEG response at time t
(single trial optimal linear 
 discriminant values)

Neural Responses

EEG trials
(sensor)



Representational Interactions

overlap
(redundancy)

I(R1 ; F) I(R2 ; F)



Representational Interactions

+ -

I(R1 ; F) I(R2 ; F) I(R1 , R2 ; F)

=

redundancy 
(synergy)

overlap
(redundancy)

I(R1 ; F) I(R2 ; F)



Representational Interactions

+ -

I(R1 ; F) I(R2 ; F) I(R1 , R2 ; F)

=

redundancy 
(synergy)

overlap
(redundancy)

I(R1 ; F) I(R2 ; F)

I(X;Y ) = H(X) +H(Y )�H(X,Y )

• MI = overlap in entropy (shared uncertainty / variance) between two signals 

• Interaction (redundancy / synergy) = overlap in MI (about an external 
stimulus) between two signals



Representational Interactions
+ -

I(R1 ; F) I(R2 ; F) I(R1 , R2 ; F)

=

redundancy 
(synergy)

• If >0 : Representational overlap: Redundancy 

• If 0 : No Overlap: Independence 

• If <0 : Synergy.



Interaction Information
• Redundancy : overlapping representation (on a trial-by-

trial basis). Suggests the modulation in both responses 
represents the same processing mechanism 

• Independence : independent representation. Suggests the 
modulation in the two responses reflects different 
processing mechanisms (different aspects on different 
trials) 

• Synergy : trial-by-trial relationship between the signals 
gives extra information about the stimulus.



Example: event-related design, 
stimulus modulated evoked response
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Example: temporal interaction



Example: temporal interaction



Example: novel information
• How much information do we gain from observing EEG[t] 

when we already know EEG[t-1]? 

•     MI(  EEG[t], EEG[t-1] ; STIM  ) - MI(  EEG[t-1] ; STIM ) 
=  CMI( EEG[t]; STIM  |  EEG[t-1] ) 



Example: novel information



Recap



Recap
• Where and how strongly does my experimental 

intervention affect my recorded responses?



Recap



Representational Interactions vs RSA

• Does not require high dimensional responses - allows 
greater temporal + spatial resolution (single sensor / 
time point) 

• Does not require discrete exemplar stimuli (can work 
with dynamic naturalistic stimuli or simple contrasts) 

• RSA can only detect overlap (redundancy), but info. 
theory approach can also identify synergy 

• Can condition out other correlated features through all 
calculations



Representational Interactions vs  
Cross-temporal decoding

• Does not require high dimensional responses 

• Temporal generalisation can only detect similar 
representations (not synergy) 

• Temporal generalisation: what can be extracted from a 
form learned from the other time point. Asymmetric. 
Information theory - directly quantifies the shared / 
common change in uncertainty about the stimulus 
(symmetric)



Partial Information 
Decomposition

• Problem: Interaction Information = Synergy - Redundancy 
(net effect)

Red(X,Y; S)

Syn(X,Y; S)

UI(X; S) UI(Y ; S)



Partial Information 
Decomposition

• Problem: Interaction Information = Synergy - Redundancy 
(net effect) 

• Partial Information Decomposition (Williams and Beer, 
2010) provides a method to separate these contributions 
to the joint information. 

• Depends crucially on a measure of redundancy: 
Ince (2016) Measuring multivariate redundant information 
with pointwise common change in surprisal  
http://arxiv.org/abs/1602.05063

Red(X,Y; S)

Syn(X,Y; S)

UI(X; S) UI(Y ; S)

http://arxiv.org/abs/1602.05063


Interactions with Behaviour

stimulus

behaviour

brain

Redundancy 

Stimulus variation 
which commonly 
effects both 
behaviour and neural 
signal: 

task-relevant stimulus 
coding



Interactions with Behaviour

stimulus

behaviour

brain

Synergy 

Improve prediction of 
behavioural response 
when stimulus + 
neural signal are 
considered together 

decision modulated 
stimulus coding 



Group Stats?
• Single subject significance is a much stronger result! (ie 

number of subjects significant) 

• Conventional group stats across subjects (treat MI 
quantities as the experimental measure) 

• Population prevalence inference 
https://github.com/allefeld/prevalence-permutation 

https://github.com/allefeld/prevalence-permutation


Summary
• A practical statistical framework for neuroimaging data analysis 

based on information theory 

• A simple statistical function (plug in replacement for correlation) 
that can handle multiple different statistical comparisons 
(multivariate, continuous, discrete) with effect sizes on a 
meaningful (additive) common scale. 

• Many related quantities that allow addressing questions that are 
difficult to address with classical statistics (correlated features, 
representational interactions, connectivity and communication). 

• Examples here were event-related, but can also be used for 
entrainment / continuous designs



Summary (Approach)

• The brain is an organ of information processing: therefore 
an information processing perspective should be useful 
for neuroimaging analysis 

• Systematic stimulus sampling 

• What information is used for behaviour? 

• Where/When its represented in the brain signals? 

• Relationship between information content of different 
signals (cf RSA)



Summary

• Soon available in Fieldtrip!



Information theoretic quantity Other statistical approaches

Mutual Information (discrete; discrete) Chi-square test of independence; Fishers exact test

MI (univariate continuous; discrete) 2 classes: T-test, KS-test, Mann-Whitney U test; ANOVA

MI (multivariate continuous; discrete) 2 classes: Hotelling T2-test; Decoding (CV classifier)

MI (univariate continuous; univariate 
continuous)

Pearson correlation; Spearman rank correlation; Kendall rank 
correlation

MI (multivariate continuous; univariate 
continuous)

Generalized Linear Model framework 
Decoding (CV regression)

MI (multivariate continuous; multivariate 
continuous)

Canonical correlation analysis 
Distance correlation

Conditional Mutual Information Partial correlation (continuous variables and linear effects only)

Directed Information Granger causality 

Directed Feature Information Dynamic Causal Modeling (Psychophysiological Interactions)

Interaction Information Representational Similarity Analysis (redundancy only) 
Cross-classification decoding (redundancy only) 
Mediation analysis


