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Neuroimaging Data Analysis

e Goal of most (functional) neuroimaging data analysis (within cognitive
neuroscience): Detect and quantify modulations of recorded signals
[EEG, MEG, fMRI] by experimental stimuli or conditions

o Statistics:

e Determine “statistical significance” (reject null hypothesis of no
effect)

e Measure size of the effect

e Eg: d’, t-test, correlation, ANOVA, GLM, multivariate decoding
approaches



Where and how strongly does the
stimulus affect the recorded signal?
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How does the stimulus
representation emerge over time?

Temporal redundancy

10.2




Mutual Information

Mutual Information (MI) is the effect size for a statistical
test of dependence (against null hypothesis that the two
variables are statistically independent)

Most general assumption/model free such test (not
restricted to linear effects)

Difficult to estimate in practise

Nice interpretations: coding/decoding, ideal observer, yes-
no questions, average single trial reduction in uncertainty



Entropy

e Ml is based on entropy; a measure of uncertainty (cf.
variance)

e High entropy = high variance; low entropy = low variance;
but entropy not restricted to unimodal variables

e Many information theoretic quantities have analogues in
traditional statistics - simply replace variance with entropy
(eg ANOVA - M)



High entropy, High variance

Low entropy, low variance

Low entropy, high variance



Mutual Information

I(R;S)=H(R)— H(S)— H(R,S)

e 3forms - each lead to an interpretation

e Replace variance with entropy - gives information
theoretic analogues to common statistics (think of
variance explained)

e Meaningful effect size - units of bits



Mutual Information

Two Gaussian Variables
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Correlation

e Unsigned; higher contrast than correlation



Calculating Mutual

Information

Discrete formulation. Bin continuous data. Bias, infeasible
for multi-dimensional signals.

Nearest Neigh
variance. Com

bour (Kraskov). Low bias, but very high

butationally expensive.

Parametric. (i.e. assume data are Gaussian). Great if
assumptions are met.

Gaussian-Copula Mutual Information. Computationally

cheap. Robust.

Data efficient. BUT an approximation



GCMI

https://github.com/robince/gcmi

http://onlinelibrary.wiley.com/doi/10.1002/hbm.23471/full

Works by “normalizing” data and then applying a Gaussian
assumption on the dependence (individual input variables
do not have to be Gaussian!)

Mathematically justified (lower bound on true information)

Rank statistic (input is ranks of each variable)


https://github.com/robince/gcmi
http://onlinelibrary.wiley.com/doi/10.1002/hbm.23471/full

GCMI

e “copula” = maths-y way of saying we look at ranks (ignore
the marginal distribution)

Data Copula
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GCMI

e “copula” = maths-y way of saying we look at ranks (ignore
the marginal distribution)

Data

Empirical CDF



GCMI

e Transform marginals to standard normal preserving rank
relationships

Original data Transformed data
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GCMI

Original data Copula Transformed data
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Transform marginals to standard normal preserving rank
relationships ( copnorm function)

Use Gaussian parametric estimation (mi gg function)

Gives a lower bound Ml estimate ( gcmi cc does both
steps)



GCMI

Multivariate

Rank based (robust)

Effect sizes on a meaningful, additive common scale
Can combine discrete and continuous variables

Equivalent statistical power to existing methods (e.g. t-
test, rank correlation, etc.)

Use with permutation testing

Fasy to use corr(X, Y);

gcmli cc(X, Y);




Multivariate Responses

Dimensionality

1 ~10 100

Univariate Supervised
stats ML

Multivariate
t-test, (rank) GCMI LDA, SVM,
correlation Localised Logistic

(Joint) regression
multivariate

responses

A = gcmi_cc(RA, Stim);
B = gcmi cc(RB, Stim);
jointAB = gcmi cc([RA RB];

-
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Multivariate Ml

e For multidimensional variables, copula transform each
dimension independently

e Can apply to low dimensional multivariate responses (1-10 dim)
e.g. magnetic field vectors, EEG voltage + instantaneous
temporal derivative, complex spectra

e Allows for higher-order information theoretic quantities :
conditional mutual information, interaction information,
directed information (transfer entropy), directed feature
information




MI as the basis of framework
for data analysis

Robust (rank based), computationally efficient, meaningful effect size
(bits), common scale (across univariate, multivariate, continuous and
discrete response variables, behaviour etc.)

Conditional Mutual Information - (like partial correlation)
condition out the effect of correlated features (also group statistics)

Interaction Information - study representational interactions (c.f.
RSA, temporal generalisation decoding)

Directed Information (transfer entropy), Directed Feature
Information (communication of specific content) (Ince et al.
Scientific Reports 2015)



Information theoretic quantity

Mutual Information (discrete; discrete)
MI (univariate continuous; discrete)

MI (multivariate continuous; discrete)
MI (univariate continuous; univariate

continuous)

MI (multivariate continuous; univariate
continuous)

MI (multivariate continuous; multivariate
continuous)

Conditional Mutual Information

Directed Information

Directed Feature Information

Interaction Information

Other statistical approaches

Chi-square test of independence; Fishers exact test

2 classes: T-test, KS-test, Mann-Whitney U test; ANOVA

2 classes: Hotelling T2-test; Decoding (CV classifier)

Pearson correlation; Spearman rank correlation; Kendall rank

correlation

Generalized Linear Model framework
Decoding (CV regression)

Canonical correlation analysis
Distance correlation

Partial correlation (continuous variables and linear effects only)
Granger causality

Dynamic Causal Modeling (Psychophysiological Interactions)

Representational Similarity Analysis (redundancy only)
Cross-classification decoding (redundancy only)
Mediation analysis



oon e
Mutual Information (discrete; discrete)
MI (univariate continuous; discrete)

MI (multivariate continuous; discrete)

MI (univariate continuous; univariate
continuous)

MI (multivariate continuous; univariate
continuous)

MI (multivariate continuous; multivariate
continuous)

Conditional Mutual Information

Directed Information

Directed Feature Information

Interaction Information

Common,
quantitatively
comparable
effect size



Questions?



Practical 1

Two category event related EEG

pracl discrete eeg.m



Data

e Face perception EEG data set (thanks to Guillaume
Rousselet, Kasia Jaworska)

e 2 classes: Face (stim=0) vs Noise (stim=1)

e (CSD preprocessing

- csddat : ‘Ntrl Nch Nt]
stim : 1 Ntrl]
time : 1 Nt]
chanlocs: 1 Nch]




GCMI - Continuous-Discrete

e Two different approaches

* mi model gd :amodel comparison more like ANOVA.
Compares a rank-Gaussian unconditional model, to
conditional rank-Gaussian models. A lower bound in 1D,
but not in 2D+.

* mi mixture gd :estimates Ml based on a mixture of
approximate rank-Gaussian conditional.



GCMI - Continuous-Discrete

* mi model gd :better statistical power,

computationally faster. Use by default
conventional statistics.

* mi mixture gd :Use for higherc
responses when you plan to do somet

when you are doing

imensional

nNing quantitative

with the resulting Ml values (e.g. comparing with
behaviour, calculating interaction information).



PART B:

e Split across participants.

e |f your birthday is the first half of the year, leave
mi_model_gd uncommented.

e |f your birthday is in the second half of the year,
comment out mi_model_gd and uncomment
mi_mixture_gd



Channels

20

40

60

80

100

120

GCMI vs t-test

GCMI

200
Time

400

10.5

10.4

Channels

20

40

60

80

100

120

T-test

200
Time

400

130

120




Model vs Mixture




Model vs Mixture




PART C: Multivariate
Responses
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BONUS ROUND: Spectral
analysis

e Stockwell transform - adaptative time-frequency

representation (like wavelets)



Spectral MI: phase and power

Simulation 1: Phase Modulation

complex amplitude phase [ direction
m Spectrum (normalised spectrum)
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Spectral MI: phase and power

Simulation 2: Power Modulation
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Spectral MI: phase and power
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Spectral MI: phase and power

Avoid issue of circular variables by remaining in 2D complex
plane but normalising away effect of amplitude

A test for modulation of phase + power by discrete or
continuous experimental factors with a directly comparable
effect size

Can be applied to spectral data from any decomposition
method (Hilbert, wavelets, emprical mode decomposition etc.)

Interaction information : can directly relate modulations of
phase and power within and across bands



GCMI Spectra

e Phase and power with directly comparable effect size

2D Complex Spectrum Power Phase
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Break

Questions?



Practical 2

Continuous feature : “Bubbles” sampling

prac2 face bubbles.m



Sampling

Random sampling as part of experimental design

Generative models can provide a tractable stimulus
feature space to sample

Variations in dynamic naturalistic stimuli

Relate sampled stimulus variation to both behavioural
responses and neuroimaging responses



Sampling with Bubbles

e “2d Bubbles” Direct spatial sampling of an image with randomly positioned
Gaussian apertures

e Gosselin, F, and Schyns, P. “Bubbles: A Technique to Reveal the Use of Information
in Recognition Tasks.” Vision Research 41, no. 17 (August 2001): 2261-71

Presented
Stimulus

Image Bubble Mask




Bubbled Face Detection

Face or Noise
Image X Bubble Mask

Presented Stimulus Detection task
response

e Face
* Noise

Rousselet, G. A, Ince, R. A. A, van Rijsbergen, N. J,, and Schyns, P. G. (2014). Eye
coding mechanisms in early human face event-related potentials. J Vis 14, 7.















Data

Stimuli: Bubble mask images
[ trials x vertical pixels x horizontal pixels ]

Behavioural Responses: face vs noise, reaction time
[ trials ]

EEG: CSD + bandpass filter
[ trials x time points x sensors |

Challenge: relate high-dimensional stimulus to behaviour
and high-dimensional EEG response



Part A: Pixels vs Reaction Time

e Reverse correlation: correlate each pixel’s visibility with a
behavioural response

Left eye pixel
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Part A: Pixels vs Reaction Time

e Calculate Ml independently for each pixel; plot resulting
image

e Scale gives good contrast for exploratory analysis

Mutual Information Pearson Correlation Spearman Correlation
41 0.025 {10.1 O VRN 1 0.05
1 0.02 0.0S 4 3
0.015 — 4 | -0.05
. _ ;
0.01 =t
~0.05 -0.15
0.005
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Part A: Pixels vs Reaction Time

e Calculate Ml independently for each pixel; plot resulting
image

e Scale gives good contrast for exploratory analysis

Mutual Information Pearson Correlation Spearman Correlation
0.14
10.2
10.025 10.12

N 0.08

0.015
0.06 e

0.01
0.04
0.05
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Part B: Dimensionality Reduction

Full pixel Ml images at every sensor + time point. Computationally
intensive and hard to visualise.

Reduce dimensionality by considering the visibility of small regions rather
than individual pixels

Defined a priori, from behaviour or from data-driven methods

Trials

K

pixels

ap3

pixels

X
Left Eye Filter Right Eye Filter

600 | 0 300 600
Left Eye Visibility Values Right Eye Visibility Values
(one per trial) (one per trial)



Part B: Dimensionality Reduction

e Sum bubble mask value (pixel visibility) within masked
regions

Right eye




Ex 1: Stimulus Dimensionality Reduction

e Relationship with RT preserved in 1D stimulus feature

e Both eyes affect RT; mouth region doesn’t (consistent
with full MI pixel image)

0.03

0.02 -

0.01 1

GCMI (bits)

-0.01 | | |
Left Eye Right Eye Mouth



Behaviour summary

e Can do this sort of analysis with any behavioural measure:
response, accuracy (correct/incorrect), choice confidence

e Can use other sampling mechanisms (generative models,
noise sampling, continuous stimuli). Key requirement is
diverse sampling of high-dimensional naturalistic stimulus
space



Part C: Stimulus Feature vs
EEG

Left Eye : Electrode B7

02 I I I I
0.15 - .
2 o01f
=3
= 005 J \/
0
-0.05 l l l l l l
-100 0 100 200 300 400 500 600
Time (ms)
Right Eye : Electrode B7
0.03 . . . . . .
0.02
)
£ 0.01
=
0
-0.01 ' | | | ' |
-100 0 100 200 300 400 500 600

Time (ms)



BIOSEMI 128 electrodes locations

128Biosemi_electrodemap.tif
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Left ye : Electrode B7

Mutual Information
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e Activation is symmetric (bilateral N170 ERP)

e But (stimulus) information is asymmetric (lateralized)

e Information (Representation, Coding, Stimulus) vs
Activation




BONUS ROUND: Movies

10ms 10ms
1D MI Left 2D MI Left



BONUS ROUND: Movies

10ms 10ms
1D MI Right 2D MI Right



Recap

e Rank based statistic
e Continuous and discrete

e Multivariate (spectra, temporal derivative)



Break?

e Move to prac3_eeg temporal_interaction.m



Representational Interactions

e Information processing perspective requires not just
tracking stimulus modulations, but relating the
representations in different neural signals

e Currently the only method that addresses this in
Representational Similarity Analysis

e We can do this with information theory



Representational Interactions

Neural Responses

Spatial Regions Temporal Regions Frequency Regions
beamformed MEG activity in: stimulus modulation of evoked MI of MEG spectrogram
auditory cortex signal on parietal EEG electrode freq
A P MI
T f,.visual cortex /\ -
time / \ time
early late gamma alpha
Reduced Response Descriptions Experimental Modalities
single trial N170
(amplitude, latency) EEG trials
EEG trials (LDA filter)
(sensor) >< R, \Z:\\
Ov time
time EEG response at timet simultaneously recorded
. (single trial optimal linear fMRI voxel activation
EEG response at time ¢t discriminant values) (single trial GLM beta)

(raw signal, gradient)



Representational Interactions

I(Ri;F)  I(R:; F)

overlap
(redundancy)




Representational Interactions

I(R,; F) I(R.; F)
overlap
(redundancy)
I(R,; F) I(R,; F) I(R,, R,; F) redundancy

(synergy)



Representational Interactions

I(R;5 F) I(R.; F)
I(R,; F) I(R,; F) I(R,, R,; F) redundancy
(synergy)
overlap
(redundancy)

(@ I(X;Y)=H(X)+HY)—-H(X,Y)

e Ml =overlap in entropy (shared uncertainty / variance) between two signals

 Interaction (redundancy/synergy) = overlap in Ml (about an external
stimulus) between two signals



Representational Interactions

Y X

I(R,; F) I(R,; F) I(R,, R, F) redundancy
(synergy)

e If>0:Representational overlap: Redundancy
e If 0:No Overlap: Independence

e If <0:Synergy.



Interaction Information

e Redundancy : overlapping representation (on a trial-by-
trial basis). Suggests the modulation in both responses

represents the same processing mechanism

e Independence :independent representation. Suggests the
modulation in the two responses reflects different
processing mechanisms (different aspects on different

trials)

e Synergy : trial-by-trial relationship between the signals
gives extra information about the stimulus.



Example: event-related design,
stimulus modulated evoked response

Left Eye OO

E———— ERP

(MV/cm?)

(eye deciles)




Example: temporal interaction

o o, Temporalinteraction information

100 200 300




Example: temporal interaction

Temporal interaction information

300

O !




Example: novel information

e How much information do we gain from observing EEG[t]
when we already know EEG[t-1]?

e  MI( EEG[t], EEG[t-1];STIM ) - MI( EEG[t-1];STIM)
= CMI( EEG[t]; STIM | EEG[t-1])

Emergence of novel Ml at each time point

0.1

O 100 200 300 400
Time (Ms)



Example: novel information

@) 100 200 300 400



(HV/em?)

ERP
(eye deciles)

Rank Correlation
(eye, EEG)



Recap

e Where and how strongly does my experimental
intervention affect my recorded responsess

0.4

_0.4 —

400

Rank Correlation
(eye, EEG)

Mi(eye; [EEG dEEG])



Recap

Temporal redundancy

10.2

Emerge'nce of novel Ml at each time point

0.1 T T T T T T T

o) 100 200 300 400
Time (ms)



Representational Interactions vs RSA

e Does not require high dimensional responses - allows
greater temporal + spatial resolution (single sensor /
time point)

e Does not require discrete exemplar stimuli (can work
with dynamic naturalistic stimuli or simple contrasts)

e RSA can only detect overlap (redundancy), but info.
theory approach can also identify synergy

e Can condition out other correlated features through all
calculations



Representational Interactions vs
Cross-temporal decoding

e Does not require high dimensional responses

e Temporal generalisation can only detect similar
representations (not synergy)

e Temporal generalisation: what can be extracted from a
form learned from the other time point. Asymmetric.
Information theory - directly quantifies the shared /
common change in uncertainty about the stimulus
(symmetric)



Partial Information
Decomposition

e Problem: Interaction Information = Synergy - Redundancy
(net effect)

stimulus modulation of evoked Syn (X’ Y; S)

signal on pariet al EEG electrode

M ‘
tme

earl \f ate

UI(X; S) UI(Y; S)

Red(X,Y; S)



Syn(X,Y; S)

Partial Information /q&
Decomposition -« [ ==

e Problem: Interaction Information = Synergy - Redundancy
(net effect)

Red(X,Y; S)

e Partial Information Decomposition (Williams and Beer,
2010) provides a method to separate these contributions

to the joint information.

e Depends crucially on a measure of redundancy:
Ince (2016) Measuring multivariate redundant information

with pointwise common change in surprisal
http://arxiv.org/abs/1602.05063



http://arxiv.org/abs/1602.05063

Interactions with Behaviour

stimulus

behaviour

Redundancy

Stimulus variation
which commonly
effects both
behaviour and neural
signal:

task-relevant stimulus
coding



Interactions with Behaviour

Synergy

behaviour Improve prediction of

behavioural response
, when stimulus +
stimulus .
’ neural signal are
considered together

brain

decision modulated
stimulus coding



Group Statse

e Single subject significance is a much stronger result! (ie
number of subjects significant)

e Conventional group stats across subjects (treat Ml
quantities as the experimental measure)

e Population prevalence inference
https://github.com/allefeld/prevalence-permutation

Valid population inference for information-based imaging: From the \D(mm
second-level t-test to prevalence inference

Carsten Allefeld®*:, Kai Gorgen®', John-Dylan Haynes? "

‘Bernstein Center for Computational Neuroscience, Berlin Center of Advanced Neuroimaging, Department of Neurology, and Excellence Cluster NeuroCure, Charité - Universitdtsmedizin
Berlin, Germany

bBerlin School of Mind and Brain and Department of Psychology, Humboldt-Universitit zu Berlin, Germany


https://github.com/allefeld/prevalence-permutation

Summary

A practical statistical framework for neuroimaging data analysis
based on information theory

A simple statistical function (plug in replacement for correlation)
that can handle multiple different statistical comparisons
(multivariate, continuous, discrete) with effect sizes on a
meaningful (additive) common scale.

Many related quantities that allow addressing questions that are
difficult to address with classical statistics (correlated features,
representational interactions, connectivity and communication).

Examples here were event-related, but can also be used for
entrainment / continuous designs



Summary (Approach)

The brain is an organ of information processing: therefore
an information processing perspective should be useful
for neuroimaging analysis

Systematic stimulus sampling
What information is used for behaviour?
Where/When its represented in the brain signals?

Relationship between information content of different
signals (cf RSA)



Summary

e Soon available in Fielatrip!

L
41 an International Neuroinformatics
Coordinating Facility
L

= data.trialinfol(:

STAT1lS1T1C =

.gcmil.method =

.gcml.complex =
.precondlition =
.numrandomization




Information theoretic quantity

Mutual Information (discrete; discrete)
MI (univariate continuous; discrete)

MI (multivariate continuous; discrete)
MI (univariate continuous; univariate

continuous)

MI (multivariate continuous; univariate
continuous)

MI (multivariate continuous; multivariate
continuous)

Conditional Mutual Information

Directed Information

Directed Feature Information

Interaction Information

Other statistical approaches

Chi-square test of independence; Fishers exact test

2 classes: T-test, KS-test, Mann-Whitney U test; ANOVA

2 classes: Hotelling T2-test; Decoding (CV classifier)

Pearson correlation; Spearman rank correlation; Kendall rank

correlation

Generalized Linear Model framework
Decoding (CV regression)

Canonical correlation analysis
Distance correlation

Partial correlation (continuous variables and linear effects only)
Granger causality

Dynamic Causal Modeling (Psychophysiological Interactions)

Representational Similarity Analysis (redundancy only)
Cross-classification decoding (redundancy only)
Mediation analysis



